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The  purpose  of  this  review  is  to  provide  an  overview  of  approximate  analytical  solutions  to  the  general
moving  boundary  diffusion  problems  encountered  during  the  release  of  a dispersed  drug  from  matrix
systems.  Starting  from  the  theoretical  basis  of the  Higuchi  equation  and  its subsequent  improvement  and
refinement,  available  approximate  analytical  solutions  for the  more  complicated  cases  involving  hetero-
geneous matrix,  boundary  layer  effect,  finite  release  medium,  surface  erosion,  and  finite  dissolution  rate
are also  discussed.  Among  various  modeling  approaches,  the  pseudo-steady  state  assumption  employed
in deriving  the  Higuchi  equation  and  related  approximate  analytical  solutions  appears  to  yield  reason-
ably  accurate  results  in  describing  the early  stage  release  of  a  dispersed  drug  from  matrices  of  different
geometries  whenever  the  initial  drug  loading  (A)  is much  larger  than  the  drug  solubility  (Cs)  in  the matrix
(or  A �  Cs).  However,  when  the  drug  loading  is  not  in  great  excess  of the  drug  solubility  (i.e. low  A/Cs val-
ues)  or  when  the  drug  loading  approaches  the  drug  solubility  (A →  Cs)  which  occurs  often  with  drugs
of  high  aqueous  solubility,  approximate  analytical  solutions  based  on  the  pseudo-steady  state  assump-
tion  tend  to fail,  with  the  Higuchi  equation  for  planar  geometry  exhibiting  a 11.38%  error  as  compared

with  the  exact  solution.  In contrast,  approximate  analytical  solutions  to this  problem  without  making  the
pseudo-steady  state  assumption,  based  on  either  the  double-integration  refinement  of  the  heat  balance
integral  method  or  the  direct  simplification  of  available  exact  analytical  solutions,  show  close  agreement
with  the  exact  solutions  in  different  geometries,  particularly  in the  case  of  low  A/Cs values  or  drug  loading
approaching  the  drug  solubility  (A →  Cs).  However,  the  double-integration  heat  balance  integral  approach
is generally  more  useful  in  obtaining  approximate  analytical  solutions  especially  when  exact  solutions

are  not  available.

© 2011 Elsevier B.V. All rights reserved.
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. Introduction

Matrix systems, where the drug is dispersed or dissolved in a
arrier in the form of ointment, tablets, granules, microspheres,
ransdermal patches, stent coatings, etc., have been very popular in
harmaceutics and drug delivery applications due to their relative
ase of fabrication as compared to the more complex membrane-
eservoir type of delivery systems. A variety of excipients based
n wax, lipid, as well as natural and synthetic polymers have been
sed as carrier material in the preparation of such matrix-type of
rug delivery systems. The drug release from such matrix systems

s mainly controlled by the diffusion process. However, depend-
ng on the physicochemical properties of the carrier material, drug
elease from the resulting matrix system may  also be accompa-
ied by concomitant swelling and/or erosion processes, e.g. when
ydrophilic polymer excipients are present. The diffusional release
f a dispersed or dissolved drug from a carrier matrix generally
nvolves the presence of a moving diffusion front separating the
naffected core and the partially extracted or depleted region,
here the front moves toward the unaffected core with time as
ore extracted region is created from the continuous drug disso-

ution and release. When an erodible or swellable polymer matrix
s involved, the drug release kinetics is further complicated by
he presence of a second moving boundary, namely the swelling
r eroding front which moves either opposite to or in the same
irection as the diffusion front. The mathematical analyses of such
ass transfer problems involving moving boundaries are generally

nown as moving boundary problems, free boundary problems,
r Stefan problems. The presence of a moving boundary intro-
uces a non-linearity so that only a few exact solutions are known
Crank, 1975; Ockendon and Hodgkins, 1975; Wilson et al., 1978).
n addition to numerical schemes, various approximate analytical
olutions have been employed over the years to solve such mov-
ng boundary problems encountered in the analysis of drug release
rom matrix systems. Despite the prevalence of numerical meth-
ds taking advantage of the ever increasing availability of computer
ower, approximate analytical solutions are still valuable because
hey are generally much easier to use and they provide explicit
unctional dependence of the drug release on various properties of
he drug and the matrix system.

Five decades ago, Professor Takeru Higuchi was the first one
n the pharmaceutical field to tackle this moving boundary math-
matical problem for drug release from matrix systems. Through
n elegant yet simple graphic mass-balance analysis employing

 linear concentration profile based on the pseudo-steady state
ssumption, he derived the famous Higuchi equation for the release
f a suspended drug from an ointment base (Higuchi, 1961). The
mazingly simple analytical expression of the Higuchi equation is
emarkable because it was derived without having to directly solve
he complex differential equations governing this planar moving
oundary problem. He subsequently extended the application of
he Higuchi equation to drug release from planar solid dosage forms
n both homogeneous and granular matrices and derived addi-
ional equations for the release of a suspended drug from spherical

atrix systems under a similar pseudo-steady state assumption
Higuchi, 1963). Professor Takeru Higuchi’s seminal work laid the
oundation for the quantitative analysis of drug release kinetics and
he understanding of factors affecting drug release from matrix-
ype pharmaceutical dosage forms. The purpose of this review
s to provide an overview of the theoretical basis of the Higuchi
quation and its subsequent improvements and refinements, as

ell as related approximate analytical solutions to the general but
ore rigorously formulated moving boundary problem in differ-

nt geometries. More complicated cases involving heterogeneous
atrix, boundary layer effect, finite release medium, surface ero-

ion, and finite dissolution rate will also be discussed. The effect of
rmaceutics 418 (2011) 18– 27 19

a swellable matrix will not be addressed here as it will be reviewed
by other authors in this issue. Exact solutions will only be cited to
demonstrate the accuracy of the approximate solutions. For exact
and numerical solutions to this problem, the readers should consult
several excellent review articles (Siepmann and Göpferich, 2001;
Arifin et al., 2006; Siepmann and Siepmann, 2008).

2. Planar matrix

2.1. The Higuchi equation

The Higuchi equation was  originally derived to describe the drug
release from an ointment layer containing suspended drug at an ini-
tial concentration A (or amount of drug loading per unit volume),
which is substantially greater than the solubility of the drug per
unit volume in the vehicle matrix, Cs (Higuchi, 1961). The drug con-
centration gradient in the matrix and the resulting diffusion flux
all exist in the direction perpendicular to the interface between
the ointment and the release medium thus representing a clas-
sical one-dimensional diffusion problem. The assumptions made,
either explicitly or implicitly, in deriving the Higuchi equation are
summarized as follows:

a) The initial drug loading, A, is much higher than the drug solu-
bility in the vehicle matrix, Cs (A � Cs); this is a key assumption
which dictates the validity of the pseudo-steady state approach.

b) The drug dissolution rate at the dispersed drug front in the
matrix is rapid comparing with the drug diffusion process; this
results in a sharp discontinuity in drug concentration at this
moving front.

c) The concentration gradient of dissolved drug in the planar
matrix is essentially constant; this is equivalent to the pseudo-
steady state assumption which results in a linear concentration
profile of dissolved drug in the partially extracted region.

d) A semi-infinite geometry applies; this limits the applicability
of the analysis to the early stage drug release from one surface
of the matrix before the advancing drug front reaches the back
surface of the matrix.

e) The drug diffusion coefficient (D) in the matrix can be treated as
a constant.

(f) The distance between suspended drug particles is much smaller
than the thickness of the ointment matrix; this reduces or elim-
inates the lag time to reach a pseudo-steady state.

g) The area of the ointment matrix layer is sufficiently large that
the edge effect can be neglected.

h) No erosion or swelling occurs in the ointment matrix.
(i) Perfect sink conditions are maintained for the entire duration of

drug release.

A schematic concentration profile considered by Professor
Takeru Higuchi in deriving his famous equation for drug release
from matrix systems containing suspended drug in contact with a
perfect sink is represented in Fig. 1, where the diffusion front at a
distance h from the ointment surface is shifted by a small distance
�h  during a corresponding time interval of drug release, �t. Also
in Fig. 1, the drug concentration profile in the partially extracted
region containing dissolved drug is assumed to be linear. This is
equivalent to the well known “pseudo-steady state” assumption
commonly employed in engineering applications.

By performing a simple graphic mass-balance analysis based on

Fig. 1, Higuchi obtained the following equation for the amount of
drug depleted or released per unit area, dM, due to the movement
of the front by �h:

dM = (A − Cs)dh + 1
2 Cs dh = A dh − 1

2 Cs dh (1)
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ig. 1. Schematic concentration profile during drug release from an ointment con-
aining suspended drug as considered by Higuchi (1961).

Also, from Fick’s first law, the diffusion flux per unit area can be
xpressed as:

dM

dt
= DCs

h
(2)

Combining Eqs. (1) and (2) to eliminate dM, Higuchi obtained
he following expression describing the progression of the moving
ront during drug release:

 =
√

DCst

2A − Cs
(3)

From Fig. 1, it is apparent that the total amount of drug release
er unit area, M,  can also be calculated from a simple mass balance:

 = hA − hCs

2
(4)

Combining Eqs. (3) and (4),  results in the well-known Higuchi
quation for drug release per unit area from a planar matrix:

 =
√

(2A  − Cs)CsDt (5a)

his can also be written as:

 =
√

2
(

A

Cs

)
− 1

[
Cs

√
Dt

]
(5b)

This is a remarkably simple equation considering the complexity
f the physical situation treated. The amount of drug released per
nit surface area from the planar matrix containing a large excess
f drug (initial drug loading � drug solubility, or A � Cs) is propor-
ional to the square root of time with the proportionality constant
elating to measurable parameters such as the drug loading, drug
olubility, and diffusion coefficient. It should be emphasized that
q. (5) is strictly valid for the early stage of drug release before the
dvancing drug front reaches the back surface of the matrix in the
ase of drug release from one side of the matrix such as from an
intment layer, or before the advancing drug fronts meet at the
enter of the matrix in the case of drug release from both sides of a
olid matrix.

The rate of drug release from a planar matrix per unit area can
e obtained by differentiating Eq. (5) with respect to time:

dM

dt
= 1

2

√
(2A  − Cs)CsD

t
(6)
Using the assumption of A � Cs, Eqs. (5) and (6) can be further
implified to:

 =
√

2ACsDt (7)
a0R

Fig. 2. General schematic concentration profile during the release of a dispersed
drug from a planar matrix.

and

dM

dt
=

√
ACsD

2t
(8)

Rigorously, the real concentration profile in the partially
extracted region is non-linear in the planar matrix. Thus, as will be
shown later, the pseudo-steady state solution to this diffusion prob-
lem exhibits varying degrees of deviation from the exact solution
depending on the magnitude of the drug loading to drug solubility
ratio.

2.2. Exact analytical solution

For drug release from a planar matrix containing suspended
drug at an initial concentration A and an equilibrium drug solubil-
ity in the matrix, Cs, the governing diffusion equation describing
the kinetics of drug release is given below. This is identical to
the problem considered by Higuchi including all the above listed
assumptions (except without introducing the pseudo-steady state
linear concentration profile and the assumption of A � Cs):

∂C

∂t
= D

∂2C

∂x2
(9)

where D is the constant diffusion coefficient, x = 0 at either the back
surface of an ointment layer or the center of a solid matrix, and
x = a at the drug-releasing matrix surface. The initial and boundary
conditions involved are:

R(t) = a, at t = 0 (10a)

C(x, t) = 0, at x = a (10b)

C(x, t) = Cs, at x = R(t) (10c)

D
∂C

∂x
= (A − Cs)

dR

dt
, at x = R(t) (10d)

Here R(t) is the time dependent position of the moving drug diffu-
sion front. As long as A > Cs, the moving boundary condition of Eq.
(10d) introduces a nonlinearity which makes this diffusion prob-
lem more difficult to solve. The physical situation considered here is
depicted in the schematic drawing of Fig. 2, where the sharp con-
centration discontinuity at the dispersed drug front implies that

the drug dissolution is rapid comparing with the drug diffusion
process; in other words, the dissolution step is not rate-limiting.

The only exact solution to this moving boundary problem
(defined by Eqs. (9) and (10)) was originally derived for melting and
solidification (Carslaw and Jaeger, 1959). The first adaptation of this
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xact solution to the analysis of drug release from a planar matrix
ontaining dispersed drug was actually Koizumi et al. (1975).  Their
ontribution in this regard has largely been overlooked in the lit-
rature over the years as almost all the citations attribute Paul and
cSpadden (1976) for adapting this exact solution to drug release.

s will be discussed later, Koizumi et al. also provided fairly accu-
ate simplified analytical expressions to this exact solution. The
vailable exact solution for drug release per unit area from such a
lanar matrix of semi-infinite geometry is:

 = 2√
� erf(�)

[
Cs

√
Dt

]
(11)

here

�� exp(�2)erf(�)  = Cs

A − Cs
(12)

When A → Cs (as well as when A < Cs), the drug is in the dissolved
tate. In this case, Eq. (11) reduces to:

 = 2√
�

[
Cs

√
Dt

]
(13)

his Eq. (13) is identical to the early time approximation of the exact
olution describing the diffusion of dissolved drug from a planar
atrix (Baker, 1987).

.3. Approximate analytical solutions

Based on a double-integration refinement of Goodman’s heat
alance integral method (Goodman, 1958) due to Volkov and Li-
rlov (1970),  Lee (1980) derived approximate analytical solutions

or the drug release from matrix systems of different geometries
ontaining dispersed drug, which better approximate the exact
olutions at all drug loading to drug solubility ratios (A/Cs) with-
ut assuming pseudo-steady state or A � Cs. The original approach
f Goodman is based on the concept that instead of finding a solu-
ion satisfying the partial differential equation for heat conduction
identical in form for diffusion) at every point, the partial differen-
ial equation can be reduced to an ordinary differential equation by
ntegrating it once over the space domain. This procedure is equiv-
lent to the well-known Karman–Pohlhausen momentum integral
ethod in boundary layer theory (Goodman, 1958; Bankoff, 1964).

riefly, it involves the integration of the diffusion equation once
ith respect to the space variable followed by the substitution of

 suitable approximating temperature (or concentration) profile
ith undetermined coefficients. The resulting ordinary differen-

ial equation can be solved for undetermined coefficients satisfying
vailable boundary conditions. The double-integration method of
olkov and Li-Orlov (1970) employs an additional integration with
espect to the space coordinate which further eliminates the spa-
ial derivatives, thereby markedly improves the accuracy of the
pproximate analytical solutions.

Double integration of Eq. (9) with the application of boundary
ondition Eq. (10d) yields the following equation (Lee, 1980):

 − R(t) =
√

Dt

g
(14)

here

 =
∫ 0

1

d�

∫ �

1

(
1 − C

Cs

)
d� + 1

2

(
A

Cs
− 1

)
(15)
Selecting a trial quadratic approximating concentration distri-
ution of the form:

 − C

Cs
= a1 + a2� + a3�2 (16)
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and substituting it into Eqs. (14) and (15), the unknown coeffi-
cients a1, a2 and a3 can be determined by applying the boundary
conditions defined in Eqs. (10a)–(10d).

Once the concentration profile of Eq. (16) is determined, the
amount of drug release can then be calculated. Using the above
described approach, Lee (1980) obtained the approximate analyti-
cal solution for this moving boundary problem of drug release from
a planar matrix in the following form:

M = 1 + H√
3H

[
Cs

√
Dt

]
(17)

where

H = 5
(

A

Cs

)
− 4 +

√(
A

Cs

)2

− 1 (18)

Eq. (17) also predicts the familiar square root of time depen-
dence for the amount of drug release per unit area, similar to the
Higuchi equation (Eq. (5)) and the exact solution (Eq. (11)).

These equations are compared in Table 1 at various A/Cs values. It
is clear that the deviation from the exact solution is consistently one
order of magnitude smaller for the approximate analytical solution
of Lee than those of Higuchi’s results. In the limit of drug load-
ing approaching the drug solubility (A → Cs) or the dissolved drug
case, the Higuchi equation gives a result 11.38% smaller that the
exact solution whereas Lee’s result is only 2.33% over. In fact, as
A/Cs > 1.04, Lee’s result is within 1% of the exact solution and as
A/Cs > 4.5, it is virtually identical to the exact solution (within 0.1%).

The selection of approximate concentration profile in this
approach can significantly affect the accuracy of the resulting
approximate analytical solution. Langford (1973) showed that a
trial quadratic profile as adopted in Lee’s approach (Eq. (16)) gen-
erally gives a higher degree of accuracy in the heat balance integral
approach than using higher degree polynomials as trial profiles.
Reconfirmation of this aspect particularly for the case of drug
loading approaching the drug solubility (A → Cs) or the dissolved
drug case has recently been attempted by Lin (2008).  Despite this,
a related earlier analysis of Lin et al. has been criticized (Lee,
2005).

2.4. Other approximate solutions

Approximate solutions to this problem have also been derived
by simplifying the exact solutions. Koizumi et al. (1975) were the
first ones to adopt the exact solution of Eqs. (11) and (12) to the
analysis of drug release from a planar matrix containing dispersed
drug. They further expressed the transcendental functions of Eqs.
(11) and (12) into series expansions of � followed by rearranging
and eliminating � terms to yield the following expression:

M =
√{

2A − 2
3

Cs − 1
45

C2
s

A − Cs
+ 2

189
C3

s

(A − Cs)
2

− · · ·
}

CsDt (19)

Truncating and keeping only the linear term in Cs, Koizumi et al.
obtained the following approximate solution:

M =
√

2
(

A

Cs

)
− 2

3

[
Cs

√
Dt

]
(20)

They showed that the accuracy of the approximation can be
further improved by keeping the first three terms of Eq. (19) and
assumed that the higher order terms can be represented by a single

term through undetermined coefficients  ̨ and ˇ:

M =
√(

2A − 2
3

Cs + ˇC2
s

A − ˛Cs

)
CsDt (21)
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Further requiring that Eq. (21) agrees with the exact solution (Eq.
(13)) and its derivatives in the limiting case of dissolved drug (i.e.
A → Cs) allows the determination of  ̨ and ˇ. From which Koizumi
et al. obtained a more accurate approximation:

M =
√{

2
(

A

Cs

)
− 2

3

(
(A/Cs) − 0.88
(A/Cs) − 0.89

)}[
Cs

√
Dt

]
(22)

Taking a similar but more intuitive approach, Bunge (1998)
modified the Higuchi equation to the following form such that
it will satisfy the exact solution, Eq. (13), in the limiting case of
dissolved drug (i.e. A → Cs):

M =
√

2
{

A

Cs
−

(
� − 2

�

)}[
Cs

√
Dt

]
(23)

Again, all these equations predict M to be linear with the square
root of time however the dependencies on A/Cs are not the same.
Eqs. (20), (22) and (23) are compared with the exact solution,
the Higuchi equation and Lee’s approximate analytical solution in
Table 1 at various A/Cs values. It is evident that the deviations from
the exact solution are also one order of magnitude smaller for these
approximate solutions than those of Higuchi’s results. Also, Eq. (20)
due to Koizumi shows similar accuracy profile as Lee’s approxi-
mate analytical solution including the 2.33% deviation from the
exact solution in the limit of drug loading approaching the drug
solubility (A → Cs) as compared with the 11.38% deviation of the
Higuchi equation. Only the improved Koizumi solution (Eq. (22))
and the Bunge solution (Eq. (23)) show better agreement with the
exact solution in the limit of A → Cs. This is not surprising as both
equations were derived by forcing a fit to the exact solution in the
limit of A → Cs. Furthermore, as A/Cs > 1.1, the deviation from the
exact solution for the Bunge solution starts to exceed that of the
Lee’s approximate analytical solution and becomes progressively
worse at higher A/Cs values. In fact as A/Cs > 50, the Bunge solu-
tion becomes less accurate than the Higuchi equation. Overall, the
improved Koizumi equation (Eq. (22)) best approximates the exact
solution at all A/Cs values. Again, this is to be expected as Eq. (22) is a
direct truncation and fitting to the exact solution. Such simplifying
approaches will not work if an exact solution is not available.

3. Spherical matrix

Higuchi also extended his pseudo-steady state analysis to the
release of suspended drug from spherical matrix systems (Higuchi,
1963). Assumptions identical to those for the planar matrix were
made in his derivation either explicitly or implicitly, except that
the pseudo-steady state concentration profile of dissolved drug in
the partially extracted region is no longer linear, rather it is of the
following form for the spherical geometry:

C = Cs
R

r

(a − r)
(a − R)

(24)

where r is the radial coordinate, a the radius, and R the time depen-
dent position of the moving drug diffusion front as shown in the
schematic drawing of Fig. 3. A and Cs have the same physical mean-
ing as in the planar matrix.

Performing a similar mass balance as in the planar matrix and
integrating the diffusion flux equation in the dissolved or partially

extracted region, Higuchi obtained the following equations for the
release of dispersed drug from a spherical matrix:

M

M∞
= 1 −

(
R

a

)3
+ 1

2
Cs

A

[
2
(

R

a

)3
−

(
R

a

)2
−

(
R

a

)]
(25)
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here M∞ is the total amount of drug release per unit area, and

6CsDt

Aa2
= 2

(
R

a

)3
− 3

(
R

a

)2
+ 1 − Cs

A

[
2
(

R

a

)3
− 4

(
R

a

)2
+

(
R

a

)

+1 + ln
(

R

a

)]
(26)

hen A � Cs, Higuchi’s Eqs. (25) and (26) can be simplified to:

M

M∞
= 1 −

(
R

a

)3
(25a)

nd

6CsDt

Aa2
= 2

(
R

a

)3
− 3

(
R

a

)2
+ 1 (26a)

On the other hand, Lee (1980) obtained the following approx-
mate analytical solution for the release of dispersed drug from

 spherical matrix based on the double-integration heat balance
ntegral method:

M

M∞
=

[
1 −

(
R

a

)3
](

1 − Cs

A

)
+ 3

(
1 − R

a

)(
Cs

A

)[
˛1 + ˛2

2
+ ˛3

3

]
(27)

ith

Dt

a2
= 1

12

[
6

(
A

Cs

)
− 4 − ˛3

](
1 − R

a

)2

− 1
3

(
A

Cs
− 1

)(
1 − R

a

)3

(28)

here

1 = 1, ˛2 = −˛3 − 1 and ˛3 = 1 +
(

A

Cs
− 1

)  (
R

a

)

−
√[

1 +
(

A

Cs
− 1

)
R

a

]2

− 1

ere, the position of the moving front, R/a, is expressed as an
mplicit function of time in Eqs. (26), (26a) and (28). An elimination
f R/a from either the Higuchi’s solutions (Eqs. (25) and (26) and
25a) and (26a)) or the Lee’s solution (Eqs. (27) and (28)) to obtain

he fractional drug release as a direct function of time is very dif-
cult. It is more convenient to correlate the fractional release with
ime at different R/a values.

Lee (1980) has demonstrated that similar to the case of a pla-
ar matrix, Higuchi’s pseudo-steady state solution for the spherical
Fig. 4. Comparison of predicted diffusion front position in a spherical matrix at low
A/Cs ratios.
Adapted with permission from Lee (1980).

matrix also fails at low A/Cs values (e.g. at A/Cs = 1.5 and 3), whereas
Lee’s solution for the spherical matrix exhibits excellent agree-
ment with the numerical solution of Tao (1967) for an equivalent
moving boundary freezing problem (see Fig. 4). Only at large A/Cs

values (e.g. A/Cs = 11) does the Higuchi solution start to show better
agreement with the numerical solution (drawing not shown). More
recently, Frenning (2004) presented a careful analysis of both the
Higuchi and Lee solutions for the spherical matrix and confirmed
that Lee’s approximate analytical solutions to the problem are more
general than the Higuchi’s results at all A/Cs values. And Higuchi and
Lee solutions become identical only in the limit of A/Cs → ∞.

Koizumi and Panomsuk (1995) took a very similar approach
as Higuchi and obtained parametric equations containing an infi-
nite series in terms of the reduced moving front position. Upon
further simplification and partial elimination of the parametric
reduced front position, they obtained the following expression for
the release of dispersed drug from a spherical matrix:

M = 4�a2
[√

2(A  − Cs)CsDt + 4CsDt

9a

(
Cs

2A − Cs
− 3

)]
(29)

This equation expresses the drug release as an explicit function of
time and therefore is easier to use than the Higuchi’s results of Eqs.
(25) and (26). However, as shown by Koizumi and Panomsuk (1995)
when comparing their results with the finite-difference numeri-
cal solutions, Eq. (29) suffers the same drawback as the Higuchi’s
results that it fails at low A/Cs values (e.g. A/Cs = 2); only at large
A/Cs values (e.g. A/Cs = 10) does Eq. (29) start to show agreement
with the numerical results.

4. Heterogeneous matrix

All the above mentioned results are strictly valid for homo-
geneous matrices. In treating a heterogeneous matrix such as a

compressed or molded granular matrix where diffusion occurs only
through the interstitial openings (or pores) produced by the leach-
ing of drug particles, an effective diffusion coefficient defined as
Dliq/� should be inserted for D and an apparent solubility εCliq

s

should be inserted for Cs, where Dliq is the drug diffusion coefficient
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n the pore fluid, Cliq
s the drug solubility in the pore fluid, ε the poros-

ty expressed as the volume fraction of void space in the matrix, and
 the tortuosity factor defined as the ratio of the effective average
ath length in the porous matrix to the shortest distance in the
irection of diffusion. Higuchi (1963) implicitly introduced such
orrections in his analysis of drug release from granular matrices
f both planar and spherical geometries. Foster and Parrott (1990)
ncorporated similar modifications in Lee’s approximate analytical
olution for planar matrix in analyzing their drug release data from
nert and heterogeneous melt matrices. These corrections are nec-
ssary to take into account the reduction of drug solubility by the
atrix porosity as well as the reduction of drug diffusion coeffi-

ient by the tortuosity factor of the matrix (Frenning et al., 2005).
t should be noted that the present definition of effective diffusion
oefficient in a heterogeneous drug-containing matrix is distinct
rom the commonly used effective diffusion coefficient defined as
liqε/� for transport across porous membranes.

. Boundary layer effect

The drug release from a matrix into an external aqueous medium
ay  be complicated by the existence of a diffusion boundary layer

t the matrix surface due to insufficient mixing. This stagnant aque-
us boundary layer presents additional mass transfer resistance
nd causes deviation from the perfect sink assumption. As a result,
he amount of drug release from a planar matrix shows an ini-
ial deviation (a delay) from the well known square root of time
ependence as depicted in Fig. 5. Roseman and Higuchi (1970)

ncorporated the diffusion boundary layer effect in the Higuchi
odel based on the pseudo-steady state assumption and A � Cs.

or a planar matrix, Roseman and Higuchi obtained the following
nalytical expressions:

2 + 2Dıh

Da
= 2DCst

A
(30)

nd

 = Ah (31)

here ı is the thickness of the diffusion boundary layer, Da the dif-
usion coefficient in the aqueous medium, and all other parameters
ave the same meaning as defined earlier. During the initial phase
f drug release when the movement of the diffusion front is small

e.g. h � 1), the h2 term of Eq. (30) will be much smaller than the h
erm and therefore can be neglected. This results in:

 = DaCst

ı
(32)
rmaceutics 418 (2011) 18– 27

This predicts an initial release linear in t which will appear to be
non-linear (or a delay) in the square root of time plot as illus-
trated in Fig. 5. As h increases with time, there will be a point when
h2 > > 2Dıh/Da and Eq. (30) reduces to:

M =
√

2ACsDt (7)

which is identical to Eq. (7), the simplified Higuchi equation for
A � Cs. Similar analysis of this problem was  also considered by Tojo
(1985).

6. Finite release medium

Drug release into a finite release medium is often encountered
in real life situation such as in vivo in a body cavity containing a
drug delivery device where the accumulation of drug in the exter-
nal finite volume of release medium tends to retard the subsequent
drug release and change the overall drug release profile from that of
under a sink condition. The exact analytical solutions to this prob-
lem are quite cumbersome and are only applicable to the case of
dissolved drug (i.e. A ≤ Cs). Lee (1980) first obtained approximate
analytical solutions to this problem for both the planar and spher-
ical matrices containing dissolved drug, and later extended it to
the cylindrical matrices (Lee, 1992) using the double-integration
heat balance integral method of Volkov and Li-Orlov (1970). Lee’s
solution for the planar matrix has the following form:

M

M∞
= (1 + 	)(1 − 
b) (33)

with

Dt

a2
= 3	2

4

[
ln 
b + 1

2

(
1

b

)2
− 1

2

]
(34)

Lee’s solution for the cylindrical matrix has the following expres-
sion:

M

M∞
= (1 + 	)(1 − 
b) (35)

with

Dt

a2
= 3

40
	3

(
1

b

− 1
)3

+ 3(3	 + 5)
160

	2
(

1

b

− 1
)2

+ 3	2(5 − 3	)
80

(
1

b

− 1
)

− 3	2(5 − 3	)
80

ln
(

1

b

)
(36)

And Lee’s solution for the spherical matrix has the following form:

M

M∞
= (1 + 	) − 	(1 + 	)

(1 + 	) − (1 − 0.5ı)2
(37)

with

Dt

a2
= − ı

3
−

(
	 + 2

3

)
ln

[
4	 + 4 − (ı − 2)2

4	

]
+ 2

3
(1 + 	)0.5

× ln

[
[2(1 + 	)0.5 + (ı − 2)][(1 + 	)0.5 + 1]

[2(1 + 	)0.5 − (ı − 2)][(1 + 	)0.5 − 1]

]
(38)

where the effective volume ration 	 is defined as:

	 =
{

V/2K�a, for a planar geometry,
V/K�a2L, for a cylinder,
3V/4K�a3, for a sphere,

b =
A

and ı = 1 −
a

Here V is the external finite volume, K the partition coefficient, �
the surface area of each side of the planar matrix, a the half thick-
ness or radius of the matrix, L the length of the cylinder, Cb the bulk
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Fig. 6. Predicted fractional release of a dissolved drug (A ≤ Cs) from a spherical
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975); (· · ·), short time solution (Carman and Haul, 1954); (- - -) approximate ana-

ytical solution of Lee.
dapted with permission from Lee (1980).

oncentration in the finite release medium, and A the initial drug
oncentration (A ≤ Cs); all other parameters have their usual mean-
ng as defined in sections above. The direct elimination of 
b from
ither Eqs. (33) and (34) or Eqs. (35) and (36), or the elimination
f ı from Eqs. (37) and (38) to express the fractional drug release
s a function of time is quite cumbersome. It is more convenient to
orrelate the fractional release with time at different 
b or ı values.

Lee (1980, 1992) has shown that solutions obtained this way
losely approximate the exact solutions (Crank, 1975) as well as
he short time analytical solutions of Carman and Haul (1954) for
n equivalent sorption problem. Such a comparison for the spher-
cal case is illustrated in Fig. 6 at various values of the effective
olume ratio 	; here the situation of 	 greater than 10 corresponds
o a near perfect sink condition. It should be emphasized that such

 close agreement with the exact solutions, in both the dissolved
ase (A ≤ Cs) discussed here and the dispersed cases with low A/Cs

alues discussed previously (Sections 2 and 3), is characteristic of
pproximate analytical solutions based on the double-integration
eat balance integral method without making the pseudo-steady
tate assumption. As shown in previous sections, approximate solu-
ions based on the pseudo-steady state assumption including the
iguchi equation tend to fail at low A/Cs values.

Zhou and Wu derived approximate analytical solutions based
n the general approach of Higuchi for the case of a planar matrix
Zhou and Wu,  2002) and a spherical matrix (Zhou and Wu,  2003)
ontaining dispersed drug in the presence of both the boundary
ayer effect and the finite release medium limitation. Because of
he complexity of the mathematical problems, they employed the
seudo-steady state approximation in defining the concentration
rofiles. Similar to other pseudo-steady state approaches, their
esults are good for large A/Cs values but become less accurate at
ow A/Cs values (e.g. A/Cs < 3).
. Surface erodible matrix

The release of a dispersed or dissolved drug from an erodible
olymer system can be controlled by either a bulk-erosion or a
Fig. 7. General schematic concentration profile during diffusional release of a dis-
persed drug from a planar matrix undergoing surface erosion.
Adapted with permission from Lee (1980).

surface-erosion mechanism. The physicochemical characteristics
of these erodible drug delivery systems have been discussed in
detail by Siepmann and Göpferich (2001).  The situation where a
planar matrix undergoes surface erosion (Fig. 7) is of special inter-
est because the rate of drug release from such a system with near
constant geometry (planar sheet) will be constant. In practice, a
diffusional contribution would always be present in addition to sur-
face erosion. In this case, exact analytical solutions are not available
due to the inherent nonlinear nature of the problem. Lee (1980) first
presented approximate analytical solutions for the drug release
from such a surface erodible planar matrix, again using the double-
integration heat balance integral method. When the eroding front
moves at a constant velocity, Lee obtained the following solutions
for the case of A > Cs:

M

M∞
=

[
1 − 1

2

(
Cs

A

)  (
1 + a3

3

)]
ı +

(
Ba

D

)  (
Dt

a2

)
(39)

and

Dt

a2
= 1

6h1

[
3
(

A

Cs

)
− 2 − a3

2

]  [
ı − 1

2h1
ln(1 + 2ıh1)

]
(40)

with

a3 = A

Cs
+ ıh1 −

√(
A

Cs
+ ıh1

)2

− (1 + 2ıh1) (41)

and

h1 = 1
2

(
1 − A

Cs

)  (
Ba

D

)
(42)

Here B is the surface erosion rate constant having the dimension
of a velocity; ı is the relative separation between the diffusion and
erosion fronts defined as ı = (S − R)/a (see Fig. 7), where S is the time
dependent position of the erosion front defined as S = a − Bt all other
parameters have the same meaning as defined in previous sections.
The parameter Ba/D is essentially the erosion rate to matrix per-
meability ratio which is a measure of the relative contribution of
erosion and diffusion to drug release. Based on Eqs. (39)–(42), the
predicted fractional release from an erodible matrix at A/Cs = 5 is

plotted in Fig. 8 as a function of time and Ba/D together with the
time when the diffusion fronts meet, where the drug release is seen
to start with a with a typical first-order kinetics and later shift to a
zero-order kinetics. When the erosion process dominates the dif-
fusion process (i.e. large Ba/D values), almost complete zero-order
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Fig. 9. Comparison of predicted fractional drug release profiles at different A/Cs
ig. 8. Predicted fractional release of a dispersed drug from a planar matrix under-
oing surface erosion at various ratios of erosion rate to matrix permeability (Ba/D).
dapted with permission from Lee (1980).

rug release will result. Eqs. (39)–(42) also predict that the drug
elease becomes more zero-order when the drug loading becomes
uch larger than the drug solubility in the matrix (i.e. A � Cs; draw-

ng not shown). The appearance of such zero-order release region
as been attributed to the synchronization of movement of the
iffusing and eroding fronts at large times.

. Finite dissolution rate

In all the modeling approaches described above, the drug dis-
olution rate at the dispersed drug front in the matrix is assumed
o be rapid comparing with the drug diffusion process resulting
n a sharp moving drug front. However, in real systems contain-
ng low solubility drugs, the dissolution rate of the suspended drug

ay  become rate limiting which markedly affects the rate of drug
elease. Such dissolution-controlled drug release kinetics was first
odeled by Ayres and Lindstrom (1977a,b) for one-dimensional

rug release from a matrix of suspensions into a perfect sink.
hrough appropriate mass balance, they obtained the governing
iffusion equation containing a source term to account for drug dis-
olution and crystallization processes. They then solved the limiting
ase relating to the analytical upper bound of the problem using
he Laplace transform method. However, the analytical solutions of
yres and Lindstrom are complicated which contain infinite series
nd require the determination of roots of transcendental equations.
s a result, they resorted to numerical methods to evaluate the
rug release kinetics. On the other hand, Chandrasekaran and Paul
1982) developed a simplified model for dissolution-controlled
rug release by treating the matrix as a semi-infinite medium.
owever, the simplified analytical solution obtained is only appli-
able when there is undissolved drug at every point of the matrix.
his arises because Chandrasekaran and Paul’s approach does not
nclude a mass balance for the suspended drug in their governing
quations.

More recently, Frenning (2003, 2004) provided more rigorous
nalysis of the release of slowly dissolving drugs from both pla-
ar and spherical matrix systems. The drug release and dissolution
rocesses are described by a set of coupled partial differential
quations. One is the general diffusion equation with an extra
ource term resulting from drug dissolution, and the other is a
eformulated Noyes–Whitney equation (Noyes and Whitney, 1897)
aking into account changes in the surface area of undissolved drug.

his latter equation will not be applicable once the dissolution
rocess is complete, similarly the source term in the general dif-
usion equation will disappear once the dissolution process has
nded. These coupled partial differential equations are nonlinear
nd cannot be solved analytically. In addition to numerical results,
ratios: (a) 20 and (b) 2, and different dissolution rate constants, �: from left to right,
�  = 1000, 100 and 10.
Adapted with permission from Frenning (2004).

Frenning (2003, 2004) derived approximate analytical solutions
for this problem by first linearizing the coupled partial differen-
tial equations followed by the application of Laplace transform
with the use of residue calculus for the inversion of the Laplace
transform. The resulting analytical expression is essentially valid
as a short time approximation however it still contains an infi-
nite series which would be cumbersome to calculate for the drug
release. A comparison of Frenning’s numerical results with his short
time approximation is shown in Fig. 9 for a spherical matrix at
A/Cs values of 2 and 20 as a function of different dissolution rate
constants (�), where Lee’s solution (Eqs. (27) and (28)) for drug
release from a spherical matrix under the assumption of rapid dis-
solution at the drug front is also included as a limiting case. It is
clear from Fig. 9 that the release profiles from both the numerical
method and the short time approximation show an apparent delay
or lag time in the square-root of time plots. This is due to the finite
dissolution rate of the slowly dissolving drug where the apparent
delay becomes more pronounced as the dissolution rate constant �
decreases. This deviation from the square root of time dependence
is very similar to the effect of boundary layer as shown in Fig. 5.
It should be noted that the release profiles calculated from Lee’s
solution (Eqs. (27) and (28)) exhibit no delay in the square-root
of time plot. This is expected as Lee’s solution was  derived under

the assumption of rapid dissolution. It is also observed from Fig. 9
that at early times, Frenning’s short time approximation agrees
well with the numerical results, but deviations start to develop at
large times.
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. Conclusions

An overview of approximate analytical solutions to the gen-
ral moving boundary diffusion problems encountered during the
elease of a dispersed drug from matrix systems has been provided.
n addition to the theoretical basis of the Higuchi equation and its
ubsequent improvement and refinement, available approximate
nalytical solutions for the more complicated cases involving het-
rogeneous matrix, boundary layer effect, finite release medium,
urface erosion, and finite dissolution rate have also been discussed.
he Higuchi equation and other related approximate analytical
olutions based on the pseudo-steady state assumption appear to
e reasonably accurate in describing the early stage release of a dis-
ersed drug from matrices of different geometries whenever the

nitial drug loading is much larger than the drug solubility (e.g.
/Cs > 10). However, when the drug loading is not in great excess
f the drug solubility (low A/Cs values) or when the drug loading
pproaches the drug solubility (A → Cs) which occurs often with
rugs of high aqueous solubility, approximate analytical solutions
ased on the pseudo-steady state assumption tend to fail, with the
iguchi equation for planar geometry exhibiting a 11.38% error as
ompared with the exact solution. In contrast, approximate analyt-
cal solutions to this problem without making the pseudo-steady
tate assumption, based on either the double-integration heat bal-
nce integral method or the direct simplification of available exact
nalytical solutions, show close agreement with the exact solutions
n different geometries, particularly in the case of low A/Cs values
r drug loading approaching the drug solubility (A → Cs). However,
he double-integration heat balance integral approach is generally

ore useful in obtaining approximate analytical solutions espe-
ially when exact solutions are not available.
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